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Abstract – The physics of nano-scale devices is largely influenced by interfaces and
boundaries. Of particular interest is the numerical treatment of the boundary of finite-
extent devices. Within the empirical tight-binding model, two kinds of boundary conditions
are examined; (i) raising the orbital energies of surface atoms, (ii) raising the energies of
dangling bonds at the surface. The Lanczos algorithm is used to obtain the eigenvalues of
the tight-binding Hamiltonian. The orbital-energy shift leads to the slow convergence of
conduction electron states above the gap and many surface states in the middle of the gap.
In contrast, the dangling-bond energy shift leads to the fast convergence of the full
spectrum of electronic structures, and efficiently eliminates all nonphysical surface states
in the middle of the gap. The remaining spectrum of the electronic structure is insensitive to
the change of the energy shift.
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1. INTRODUCTION

The empirical tight-binding model has been
successful in efficiently describing the electro-
magnetic and optical properties of semiconductor
nanostructures [1-8]. The success results from the
flexibility of determining the tight-binding
Hamiltonian and overlap parameters and the
minimization of the number of basis orbitals with
atomic orbitals of valence electrons [9-12]. Compared
to other atomistic models such as the pseudo-potential
and density-functional theory, the tight-binding model
is computationally efficient due to the minimized
number of basis orbitals [13-16]. However, even with
the efficient tight-binding model, the calculation of the
electronic structure of nanostructures is still
computationally challenging because the number of
atoms involved in the nano-system can reach over 10
millions.

The majority of atoms in nanostructures
constitutes a buffer layer which surrounds a core
nanostructure such as a quantum dot, wire, and well.
The buffer layer usually provides a confining potential
to the electron Hamiltonian. The potential leads to
bound electron states that are effectively confined in
the core nanostructure. The leakage of the electron
states to the buffer layer exponentially decreases with
increasing the distance from the core nanostructure.
Therefore, it is not necessary to model the buffer layer
with a real size which can be as large as 100 nm. In
determining the size of the modeled buffer layer, there
is a trade-off between computational efficiency and
accuracy.  This leads to the need of finding a sensible
boundary condition that can efficiently imitate a large
buffer layer with a relatively small buffer. The
sensible boundary condition should efficiently
eliminate all nonphysical surface states, and at the
same time minimally affect physical interior states. In

this work, we examine two kinds of boundary
conditions to find an efficient and reliable treatment.
The efficiency and reliability are measured by the
required Lanczos iteration number for eigenvalue
convergence and the elimination of nonphysical
surface states.

2. BOUNDARY CONDITIONS

The first boundary condition considered is to
raise the orbital energies of surface atoms. This
method discourages electrons from populating the
surface-atom orbitals. However, this treatment does
not differentiate surface atoms with a different number
of dangling bonds, which ranges from one to three in
zinc-blende crystal structures. Therefore, we also
consider the second boundary condition that is to raise
the dangling-bond energies of surface atoms. Within
this method, the connected-bond energy of surface
atoms is intact and hence there is no extra penalty for
electrons to occupy the connected bonds of surface
atoms. When the modeled buffer layer is large
enough, both boundary conditions should in principle
yield an almost identical electronic structure since the
effect of surface atom is small in the large buffer.

Within the boundary condition I of raising orbital
energies, the Hamiltonian block matrix for a surface
atom with basis set {|s>, |px>, |py>, |pz>, |s*>} is given
by
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where E is the energy of the basis orbital and D is the
energy shift for the orbital on a surface atom. A
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different energy shift can be chosen for a different
basis orbital.

For the boundary condition II of raising dangling-
bond energies, we first change the basis set of the
Hamiltonian block matrix from {|s>, |px>, |py>, |pz>,
|s*>} to the set of hybridized orbitals that are aligned
along bond directions. In the zinc-blende structure, the
hybridized orbitals are

† 

spa =
1
2

( s + px + py + pz ),

spb =
1
2

( s + px - py - pz ),

spc =
1
2

( s - px + py - pz ),

spd =
1
2

( s - px - py + pz ).

                          (2)

Second, we raise the energy of a hybridized orbital
by Dsp if the orbital is along the dangling bond
direction. For instance, if the surface atom has two
dangling bonds along |spa> and |spc> directions, the
Hamiltonian block matrix for the surface atom is
given by

† 

A + D sp B B B 0
B A B B 0
B B A + D sp B 0
B B B A 0
0 0 0 0 Es*
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,                         (3)

where A=Es/4+3Ep/4 and B=Es/4-Ep/4. 
Finally, we transform the Hamiltonian back into

the original basis set of  {|s>, |px>, |py>, |pz>, |s*>}.
The final Hamiltonian block matrix of the surface
atom becomes

† 

Es +
D sp

2
0

D sp

2
0 0

0 E p +
D sp

2
0

D sp

2
0

D sp

2
0 E p +

D sp

2
0 0

0
D sp

2
0 E p +

D sp

2
0

0 0 0 0 Es*

Ê 

Ë 

Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 

.   (4)

In comparison with Eq. (2), this block matrix contains
nonzero off-diagonal elements. Furthermore, the shift
of the diagonal element is proportional to the number
of dangling bonds. If the surface atom has n dangling
bonds, the energy shift of the diagonal element is
given by nDsp/4. Therefore, this boundary condition
distinguishes surface atoms with a different number of
dangling bonds.

In some degree, the boundary condition II mimics
the physical passivation of dangling bonds with other
atoms such as hydrogen and oxygen. Experimentally,
silicon surfaces are usually passivated by hydrogens to
improve the conductivity. The hydrogens form
bonding and anti-bonding states with the dangling
bonds of Si at the surface. For example, the energies
of the bonding and anti-bonding states of SiH4 are
about 18 eV and 5 eV below the valence band edge of
bulk Si, respectively [17]. Therefore, hydrogen

passivation efficiently removes surface states localized
in dangling bonds. In connection with this mechanism,
the boundary condition II can be seen as forming the
bonding/antibonding state between a dangling bond
and “vacuum” at the energy determined by Dsp. 

3. RESULTS

We choose a self-assembled InAs quantum dot to
test the two types of boundary conditions. The self-
assembled dot is surrounded by a GaAs buffer layer.
The dot is lens shaped with diameter 30 nm and height
6 nm. The dot is composed of 113,347 atoms. An
appropriate size for the GaAs buffer layer depends on
the type of calculations. For strain-profile calculations,
the buffer thickness should be as large as the dot size
since the strain effect is long-ranged [18]. For
electronic-structure calculations, the buffer thickness
can be smaller than the dot size because bound
electron states are effectively spatially confined inside
the dot. Therefore, we use the buffer-layer thickness
20 nm for strain-profile calculations, and reduce the
thickness to 5 nm for the electronic-structure
calculation while keeping the atomic positions
obtained from the strain calculation. The equilibrium
atomic positions are calculated by minimizing the
strain energy using Keating’s atomistic valence-force-
field model [19][20].
 The tight-binding Hamiltonian for the InAs dot
and the GaAs buffer is constructed based on sp3d5s*
orbitals and up to nearest-neighbor interactions. The
parameters are chosen by fitting them to bulk band
structures with a genetic algorithm [20]. To take into
account the effect of the displacements of atoms from
unstrained crystal structures, the atomic energies (the
diagonal parts of the tight-binding Hamiltonian) are
adjusted by a linear correction within the Löwdin
orthogonalization procedure [21][22]. The coupling
parameters between nearest-neighbor orbitals (the off-
diagonal parts of the tight-binding Hamiltonian) are
also modified according to the generalized Harrison’s
d-2 scaling law and Slater-Koster direction-cosine
rules [23][24].

Implementing the two boundary conditions
requires a sensible choice of the energy shift D for
surface atoms. The energy shift should be high enough
to discourage electrons from occupying the surface
atom orbitals and consequently to eliminate all
nonphysical surface states. At the same time, it should
be small enough to minimally affect the electronic
structure of interior states. The diagonal energies of
the tight-binding Hamiltonian gives a guide to the
energy shift. The diagonal energies are ranged from
–0.6 eV to 20 eV. Therefore, we choose the energy
shift on the order of the tight-binding Hamiltonian
parameters. The energy shifts used in this calculation
are Ds= 5 eV, Dp= 4 eV, Dd= 3 eV, Ds*= 0 eV, and Dsp=
10 eV. The effect of the energy shift on the electronic
structure is discussed in detail later in the paper.  

Lanczos algorithm is used to obtain the
eigenvalues of the tight-binding Hamiltonian [25].
Lanczos algorithm is the most commonly used
iterative eigenvalue solver for a large-dimensional,
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sparse, hermitian matrix, which is the case for the
tight-binding Hamiltonian. At each Lanczos iteration,
the large matrix is projected into a lower-dimensional
subspace. The reduced matrix is tridiagonal and its
eigenvalues approximate those of the original large
matrix when the eigenvalues converge.

Figure 1 presents the eigenvalues of the Lanczos
tridiagonal matrix as a function of the number of
Lanczos iterations. The boundary condition II of
raising dangling-bond energies leads to the fast
convergence of the full spectrum of eigenvalues, while
the boundary condition I of raising orbital energies of
surface atoms yields the slow convergence of only the
partial spectrum. To visualize the importance of
having a proper boundary condition, the eigenvalues
without boundary condition are also plotted in Figure
1(c). When no boundary condition is implemented,
many surface states are formed, and it prevents
Lanczos algorithm from resolving eigenvalues for
physical interior states. 

Figure 1: Eigenvalues of the Lanczos tridiagonal matrix versus
the number of Lanczos iterations (a) with the boundary
condition I of raising surface-atom-orbital energies,  (b) with the
boundary condition II of raising dangling-bond energies, and (c)
without boundary condition.

The boundary condition II efficiently eliminates
all nonphysical surface states in the middle of the gap
between about 0.3 eV and 1.2 eV, as shown in Figure
1(b). In contrast, the boundary condition I leads to
many surface states in the middle of the gap (see
Figure 1(a)). The dense spectrum of nonphysical
surface states prevents the convergence of bound hole
states below 0.3 eV. These qualitatively different
spectra between the boundary conditions I and II show
that it is essential in modeling the electronic structure

to use the boundary condition that can efficiently
eliminate all nonphysical surface states.

In terms of the number of Lanczos iterations
required to obtain the converged eigenvalues, the
boundary condition II is also more efficient than the
boundary condition I. Table I lists the number of
Lanczos iterations required for a given number of
converged eigenvalues for both boundary conditions.
For example, to acquire four eigenvalues, the
boundary condition I requires twice as many iterations
as the boundary condition II. The efficiency of the
boundary condition II is attributed to the elimination
of the dense spectrum of surface states. In general,
iterative eigenvalue solvers easily find eigenvalues in
a sparse spectrum, but show difficulty resolving
eigenvalues in a dense spectrum.  

Table I: Number of Lanczos iterations required to obtain
converged eigenvalues for the boundary condition I of raising
orbital energies of surface atoms and for the boundary
condition II of raising dangling-bond energies.

Number of converged
eigenvalues

Boundary
condition I

Boundary
condition II

1 1460 520
2 3740 1280
3 3860 1860
4 4600 2040

Finally, we investigate the reasonable choice of
the energy shift Dsp for the boundary condition II. The
ultimate goal is to eliminate any surface states and at
the same time to minimally affect the electronic
structure of interior states. Figure 2 shows converged
eigenvalues with respect to energy shift Dsp. Energy
shift Dsp=5 eV leads to many surface states in the
middle of the gap. However, when the energy shift is
higher than 10 eV, all the surface states are eliminated
and the converged eigenvalues vary only within 0.1
meV. This indicates that the electronic structure is
insensitive to the choice of the energy shift within the
boundary condition II if the shift is big enough to
remove all surface states. In contrast, the effect of the
choice of energy shifts in the boundary condition is
highly unpredictable as the slight change of shifts
leads to completely different Lanczos eigenvalue
spectrum. For instance, changing Dp from 4 eV to 5
eV leads to no converged eigenvalues even above 1.3
eV, in comparison with Figure 1(a).

Figure 2: Converged eigenvalues of Lanczos tridiagonal matrix
versus dangling-bond energy shift.
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4. CONCLUSION

In summary, we have investigated the two types
of boundary conditions for the electronic structure of
semiconductor nanostructures with empirical tight-
binding model. The boundary condition II of raising
dangling-bond energies demonstrates higher
efficiency than the boundary condition I of raising
orbital energies of surface atoms, in terms of both
surface-state elimination and eigenvalue-convergence
speed. With the efficient boundary condition II, we
have further examined the effect of the dangling-bond
energy shift on the electronic structure. The energy
shift bigger than about 10 eV efficiently removes all
nonphysical surface states in the middle of the gap,
and yields the energy gap highly insensitive to the
change of the energy shift.  
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